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1 Introduction
Real-time rendering – the creation of images of 3D scenes in real time – is a particularly im-
portant and active domain of computer graphics. It is, for example, useful for video games.
Since it requires a lot of computations, it is usually done on a Gpu. Historically, this has been
mainly realized thanks to rasterization: a simple technique where primitives such as triangles
are directly projected on the output image. This method is rather efficient, but presents the
major drawback of producing images that may seem unrealistic. On the other hand, ray-trac-
ing and path-tracing are methods that produce more realistic images, but take longer to be
executed. While ray-tracing can now be used in real time, it is not yet the case of path tracing,
a Monte Carlo algorithm that takes time to converge. When used at real-time rates, it can
produce very noisy images, or even images containing almost only noise. Several methods have
been suggested to reconstruct the expected image from the noisy output of the path-tracer.
One promising method consists of using machine learning to do it. It can work well, but the
inference of the neural network is time-consuming. Thankfully, Nvidia recently released an
extension allowing developers to use physical components of the Gpu to boost the speed of
machine learning tasks. The goal of the internship is to take advantage of this extension to
evaluate the output of a neural network quickly, measure the evaluation time and figure out
whether this technique could be used at real-time rates.

2 Denoising images
2.1 Rasterization, ray tracing and path tracing
Rasterization, ray tracing and path tracing are different algorithms that can be used to create
images of 3D scenes. In short, rasterization is a fast algorithm, but it is quite limited as it can’t
render correctly every kind of scene. Ray-tracing produces more realistic images, but is slower
even if it can now be run at real time rates. The path-tracing algorithm can produce realistic
images, but it is way slower. More explanations on these different approaches can be found on
Nvidia’s website [1].

The path-tracing algorithm relies on a Monte Carlo method to estimate the color of each
pixel. As shown by Figure 1, the algorithm may be slow to converge: here, 10000 samples
per pixel are needed to obtain an image with a reasonable quality. Even if the convergence of
the algorithm can be improved with various techniques such as using more efficient sampling
methods, modern graphic cards can’t evaluate in real-time enough samples per pixel to obtain
images that do not seem very noisy.

100 samples
per pixel

300 samples
per pixel

900 samples
per pixel

10000 samples
per pixel

Figure 1: Convergence of the Monte Carlo renderer
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2.2 Machine Learning Denoising
Since path tracing can produce noisy images, research has been made to find methods to recon-
struct the expected image from the noisy output of the path-tracer. In 2017, Chaitanya et al. [2]
 focused on images rendered with a low sample count, and suggested using a machine learning
approach to realize the denoising. They used a fully convolutional neural network with the U-
Net architecture [3], as shown in Figure 2. The network is given the image and information
about the geometry of the scene (for each pixel, the depth, the normal and a property of the
material), and produces a denoised version of the image. Neural networks with this architecture
are still studied and used in recent papers [4, 5, 6], so I focused on this kind of network.
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Figure 2:  Architecture of the network.

On the figure, the dimensions listed in some of the layers correspond to the dimensions of the
output of the layer when the network is given a 128 × 128 tile as input. As the network is fully
convolutional, it can be executed on images with other sizes. In this case, the dimension of the
output of each layer depends on the dimension of the input image.

The different types of layers are the following:
• Convolution layer. Perform a 3 × 3 convolution on the input. A constant bias is

added to each output feature, and the ReLU activation function is used. As a reminder,
ReLU : 𝑥 ↦ max(𝑥, 0). Some coefficients are not well-defined since they correspond to pixels
outside the image. They are replaced with zeros.

• Max pooling. Each 2 × 2 block of the input is merged into one single pixel by taking the
maximum value of each component among the pixels in the block. If the input has a size
of 𝑤 × ℎ × 𝑑 (a 𝑤 × ℎ image with 𝑑 components per pixel), the output will have a size of
𝑤
2 ×

ℎ
2 × 𝑑.

• Nearest neighbor upsampling. The output is divided into 2 × 2 blocks. All the pixels in
the same block have the same value: the value of the pixel that has the position of the block
in the original input. If the input has a size of 𝑤 × ℎ × 𝑑 (a 𝑤 × ℎ image with 𝑑 components
per pixel), the output will have a size of 2𝑤 × 2ℎ × 𝑑.

• Skip connection. Concatenates the features of two images with the same dimensions.
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2.3 Training and evaluation
As the training of the network was not the goal of the internship, I did not spend too much
time trying to optimize it. It is far from being optimal, but it works well-enough to demonstrate
the efficiency of convolutional networks to denoise images. Plus, I used an architecture that is
known to perform well at this task: it has already been shown that with correct training, these
networks can work well in a large variety of scenes.

2.3.1 Training data
Thirty different scenes are generated randomly. They contain different objects (cubes, spheres,
torus, teapots and monkeys) placed randomly and with a random color. The camera is also
placed randomly. The lights are big rectangles placed at the top of the scene: they allow the
presence of soft-shadows. Some of the full images are represented on Figure 3.

Figure 3: Some of the training scenes

The images of the different scenes are generated with my own renderer [7] using path-tracing.
Each scene is rendered three times with 4 samples per pixel to obtain noisy images, and one
time with 10000 samples per pixel to obtain the expected image. The network is trained on 900
128 × 128 tiles taken from the images. Its input consist of several values for each pixel:
• The RGB color of the input pixel.
• Optionally, information about the geometry of the scene: the normal and the depth corre-

sponding to each pixel. This information can help the network to detect edges better.

If the geometry of the scene is given, the network contains 861093 trainable parameters.

The network is implemented with Tensorflow [8], and trained for 200 iterations using the
Adam algorithm.

2.3.2 Evaluation
The network is evaluated on scenes generated with the same protocol as the training scenes.
Two different scenarios are tested: with and without the geometry of the scene as additional
input.

Overall, as shown in Figure 4, the results are rather good: the network is able to reconstruct
the expected image from the noisy input.
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Input Without geometry With geometry Expected
Figure 4: Denoising output

On Figure 5, we can see how the network performs on small details of some of the scenes. The
first example shows a tile where both networks perform rather well: the reconstructions look
like what was expected. On the second line, there is an example where the network that does
not have access to the geometry of the scene struggles to reconstruct the image: the shape looks
very blurry. This is not surprising given the low quality of the input: doing the reconstruction
would probably be a difficult task even for a human! The other network does it very efficiently:
as it has access to the geometry of the mesh, it is able to draw the edges of the mesh at the right
place. Without having access to the geometry of the scene, the first network can realize even
worse predictions, as shown in the last example. It understands that two different faces must
be separated by an edge, but fails to draw the boundary correctly. The cube appears really
distorted.
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Input Without geometry With geometry Expected
Figure 5: Impact of adding the geometry of the scene as input to the network

3 Introduction to Gpu computing
Before getting into all the details of GPU denoising, it is necessary to understand how Gpus
work, and how to write code that can be executed quickly on a graphic card. I will first intro-
duce the general architecture of a graphic card, and then explain some hardware effects that
affect the performance of the code.

3.1 Architecture of a Gpu
The architecture of a Gpu is really different from what we are used to when we write code that
runs on CPUs. A Gpu is designed to perform similar tasks on different data very efficiently.
Gpus were firstly created to perform graphic tasks, but they are now often used to perform
general computations (that is known as Gpgpu: General-Purpose computing on Graphics Pro-
cessing Units). In the report, I will only use them to perform general computations, without
using the graphic pipeline that is available.

3.1.1 Thread hierarchy
The program executed on the graphic card can be written in a language similar to C. A pro-
gram is composed of several shaders. Each shader defines a function, the kernel, that can be
executed many times with different data in parallel: each of these instances is called a thread.
On Figure 6, the threads are represented by the small orange arrows.

A thread is part of a thread block, a programming abstraction representing a group of
threads executed on the same physical component, called a streaming multiprocessor (SM).
Threads belonging to the same thread block can communicate by sharing memory. They are
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not necessarily executed at the same time, but they can be manually synchronised. However,
thread blocks are completely independent: they can be executed on different multiprocessors at
different times, so threads of different thread blocks can not communicate.

At a lower level, the threads of a thread group are divided into warps. Each warp is a group
of 32 threads executed at the same time by the streaming multiprocessor. At a given time, all
the 32 processors in the SM will perform the same instruction, but on different data. In the
figure, the warps are represented by the big orange arrows. The warps on the right are being
executed, while the warps on the left are waiting to be scheduled.

Figure 6: Thread hierarchy

3.1.2 Memory hierarchy
The data manipulated by the GPU can be stored on different memories, each type of memory
having different size and access time.
• The biggest memory available is called the global memory. It is similar to the RAM used

when writing CPU code. It can store a few Gigabytes of data, but it has the drawback of
being very slow: each request can take hundreds of nanoseconds to be executed, as shown in
Figure 7. The global memory is shared among the threads.

• The shared memory is a smaller but more efficient memory. It has a size around 100 KB
[9, 16.2], and can answer each request in a few nanoseconds as shown in Figure 8. Shared
memory is located on each SM, and only the warps scheduled on the SM can access it. As a
consequence, only the threads of the same thread block, which are guaranteed to be executed
on the same SM, can share some shared memory.

• A thread also has access to a small amount of very fast memory: registers. They are used
to store variables . If it is not possible to store all the variables on registers, some of them
are spilled to local memory. They are then stored on the device memory, which makes their
access times significantly longer [9, 5.3.2].
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3.2 Hardware effects

3.2.1 Accessing the global memory
Since the global memory is mainly stored on the GPU’s biggest and slowest memory, it is costly
to use it: each request can take several hundreds of nanoseconds to be performed. Thankfully,
to reduce this time, the global memory can be cached on L1 and L2 caches.

To show this behavior, I created a simple program that, given an integer 𝑛 and a permu-
tation 𝜎 of ⟦0, 𝑛 − 1⟧, computes 𝜎1000000(0). This prevents compiler optimizations and forces the
requests to be performed serially.

uint pos = 0;
for (int i = 0; i < 1000000; i++) {
    pos = buffer[pos];
}

Figure 7 shows the time needed to read a value from the global memory as a function of 𝑛, the
size of the permutation.

Figure 7: Access time to global memory

We can distinguish three phases:
• When 𝑛 is small, all the data can be stored on the L1 cache. The access time is small.
• When 𝑛 has an intermediate size, the L2 cache is used. The requests are about 100 ns slower

than before.
• When 𝑛 gets bigger, the caches become useless and the data is constantly read from the

global memory. The access time is about 600 ns per request.
• I am not sure why the access time keeps increasing, but it is probably not important since

it only concerns very big buffers.

3.2.2 Memory coalescing
As shown in the previous section, accessing the global memory can be a costly operation. To
limit the overhead of accessing this part of the memory, the requests of the different threads in
the warp can be coalesced: they are automatically merged into a smaller number of requests to
larger portions of global memory.

The documentation of Nvidia [10, 9.2.1] describes the rule used to coalesce memory ac-
cesses: “The concurrent accesses of the threads of a warp will coalesce into a number of
transactions equal to the number of 32-byte transactions necessary to service all of the threads
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of the warp.”. As specified later in the same document [10, 9.2.1.2], the transactions are aligned
with 32-bytes segments.

As non-coalesced memory access can be really costly, it is important to avoid them when
possible.

3.2.3 Bank conflicts
As we saw in the previous section, the shared memory plays a central role in the execution of
a program. It allows storing data of an intermediate size and sharing it between threads of the
same block without having to use the global memory which is hundred times slower.

The shared memory of an SM is stored in 32 physical components called memory banks. A
memory bank can answer to only one request at a time: if several threads try to access different
bytes stored in the same memory bank, the requests will be processed serially – this is called
a bank conflict. As this is slower than processing the requests in parallel, bank conflict should
be avoided. In the ideal case, when a request is performed, each thread should use a different
memory bank than the others. It is the responsibility of the developer to avoid these conflicts.
Fortunately, it is easy to know where each variable is stored: a byte at address 𝑎 is stored in
the (⌊𝑎4⌋mod 32)th memory bank.

To measure the impact of bank conflicts, I created a simple program that runs on the GPU.
Only one thread block of 32 threads is created, so all the threads are executed together in the
same warp. I tested 32 different scenarios: in the 𝑘th scenario, the 𝑖th thread accesses data at
pseudo-random addresses belonging only to the first memory bank if 𝑖 ≤ 𝑘, or to the 𝑖th memory
bank otherwise. All the bank conflicts occur on the first memory bank: 𝑘 threads try to access it
at the same time. In particular, when 𝑘 = 1, there is no bank conflict. The measured execution
times in the different scenarios are plotted on Figure 8.

Figure 8: Overhead of bank conflicts

We can see that the execution time is an affine function of the number of threads accessing the
first memory bank. Each conflict produces an overhead of about 2 ns: this is the time needed
to read from and write to the shared memory.

It may be interesting to note that bank conflicts occur only when threads try to access
different bytes. If two threads access the same byte, no bank conflict occurs as the memory can
be sent to the two threads at the same time. This may append, for instance, if the variables
that are being accessed use less than 32 bits of memory, which is the case of float16 [9, 16.4.3].
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3.2.4 Thread divergence
As described earlier, all the threads in the same warp are executed together following the SIMT
(Single Instruction, Multiple Thread) model. Each instruction is applied by all the processors
of the SM at the same time, each processor working on its own data. However, the shader code
may contain if statements. In such a case, it is possible that a part of the code should be
executed by only some of the threads in the warp. When this happens, the instructions are
still enumerated and sent to all the processors, but the processors that shouldn’t execute the
instructions are disabled.

This effect can have an important impact on performances. For instance, let’s consider the
following program where a condition C is used to choose whether to execute f or g.

if C:
    f()
else:
    g()

If the condition C is verified by all the threads in the warp, only the code from f will be executed.
Similarly, if none of the threads verify C, only the code from g will be executed. However, if
some threads verify C while others do not, both f and g will have to be executed. As all the
processors in the SM have to execute the same instruction at each step, the two branches will
be processed serially.

To show this effect, I created a program composed of 32 threads. A parameter 𝑐 given to
each of them is used to select the number of threads that will execute f. The other threads will
execute g. The functions f and g are very similar and take approximately the same time to be
executed. The execution time of the program depends on 𝑐:
• If 𝑐 = 0 or 𝑐 = 32, all the threads execute the same function. The total execution time is

about 137 ms.
• If 𝑐 ∈ ⟦1, 31⟧, the two functions are executed. The total execution time is about 274 ms,

which is about two times slower.

This phenomenon must be taken into account when trying to optimize GPU shaders. It illus-
trates how GPUs are different from CPUs.

4 Matrix multiplication
4.1 State of the art
As explained earlier, denoising an image can be done using machine learning techniques. To be
able to use these methods in real-time, it is necessary to be able to perform matrix products
efficiently on the GPU. As it is a very important problem, a lot of research has been realized
in this domain.

To obtain good performance, a first approach consists of implementing the naive algorithm
very efficiently. Nvidia developed Cutlass, an optimized library that can be used with Cuda,
a language designed to perform general computations on GPUs. Nvidia’s blog [11] describes
how the multiplication is done. A three-level hierarchy is used to take advantage of the thread
and memory hierarchies of GPUs. This library can use the tensor cores – see the next section –
to accelerate the product. The problems with such libraries is that they are usually designed to
be used with Cuda, and not with Vulkan. It is thus difficult to use them in real-time graphic
applications that rely on Vulkan (Cuda does not support all the graphic pipeline available on
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the Gpu). According to my supervisor, using Cuda libraries would introduce an overhead of
several milliseconds per frame, which is not acceptable.

To allow using the tensor cores of the Gpu in Vulkan, the cooperative matrix extension was
published by Nvidia. Since this extension is relatively new – the GLSL extension was released
in 2019 [12] –, no good library is available to perform matrix multiplication efficiently. There
are a few Vulkan libraries that can be used to perform fast matrix product, such as Ncnn
[13]. However, they do not seem to be able to take advantage of the tensor cores.

From an algorithmic perspective, researchers also investigate the possibility of using more
efficient algorithms such as Strassen’s algorithm [14]. However, the performance is not signif-
icantly improved compared to the naive algorithm, and an efficient implementation of the naive
algorithm is still needed. Thus, I chose not to focus on this approach.

4.2 Tensor cores
To improve the performance of matrix multiplication algorithms on its GPUs, Nvidia added
special components dedicated to this task: tensor cores. Each SM contains four tensor cores
[9, 16.7.1] that can perform matrix multiplications really quickly [9, 7.24.6]. Since tensor cores
are hardware components, they can not work on arbitrary types of data. Nvidia’s documenta-
tion [9] [9, 7.24.6] lists the matrix formats that are supported by the tensor cores. In the rest
of the report, I will only use them with 16 × 16 matrices containing float16 coefficients. The
performance of the tensor cores have already been studied and evaluated [15].

I benchmarked these tensor cores with the following protocol. Only one thread block is
executed, so that all the code runs on the same SM. Given 𝑛 ≥ 1, 𝑛 warps (that is, 32 × 𝑛
threads) are started. Each warp computes three million matrix multiplications. To avoid expen-
sive accesses to memory, only three matrices are used for the whole computation. The execution
time is plotted on Figure 9.

Figure 9: Benchmark of the tensor cores

The execution time depends linearly on ⌊𝑛4 ⌋. It is thus important to schedule enough warps on
the same SM to be able to use all the available tensor cores simultaneously. It is important to
understand this behavior to obtain good performance, especially since it is not really directly
documented.

We can also use these measurements to compute an estimation of the maximal throughput
potentially achievable by the GPU. The graph shows that each series of 4 × 3 × 106 multipli-
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cations takes 50ms. Thus, each SM can execute 2.4 × 108 multiplications per second. Since the
matrices are 16 × 16, this corresponds to almost 1 TFlops. The GPU contains 48 SMs, so the
maximal throughput theoretically achievable is around 47 TFlops.

To multiply two matrices, two types of floating-point operations are necessary: additions
and multiplications. To compute the throughput of an algorithm, I will consider the number of
floating-point operations as the number of multiply-add operations. Multiplying a 𝑛 × 𝑝 matrix
by a 𝑝 ×𝑚 matrix will therefore count as realizing 𝑛 × 𝑝 ×𝑚 operations. It is different from
what is sometimes done: for example, the benchmark of the cooperative matrix extension [16]
 cited on the presentation [17] rather counts the real number of operations, that is twice the
number of multiply-add operations. I believe that it is not coherent as additions and multipli-
cations do not take the same time to be executed, and can sometimes even be executed together.

4.3 Matrix multiplication algorithms
Suppose that we have two matrices, 𝐴 ∈ ℝ𝑛×𝑝 and 𝐵 ∈ ℝ𝑝×𝑚, and we want to compute their
product 𝐶 = 𝐴×𝐵 ∈ ℝ𝑛×𝑚. For some of the following algorithms, we will decompose these
matrices in small blocks. We will suppose that the dimensions of the matrices are multiples of
the size of the blocks. If it is not the case, it is possible to extend the matrices with lines or
columns of zeros.

All the following approaches implement the naive 𝒪(𝑛 × 𝑝 ×𝑚) algorithm. However, they
have different ways to access the memory, which are the cause of different performance. Each
subsection contains an estimation of the throughput of the corresponding algorithm. It is es-
timated with the computation of the product of 4096 × 4096 matrices. The last subsection
compares the performances of all these algorithms.

Some of these algorithms have already been explained and evaluated in a recent presenta-
tion [17]. However, these measurements have several limitations.
• One of the goals of the presentation was to show the speed of tensor cores compared to

regular cores. However, the two components are not used in the same way: the memory
is used more efficiently with the tensor cores. This could produce a bias, and it made my
supervisor quite sceptical about these results.

• The throughput obtained with each method is not compared to the theoretical maximal
throughput achievable. The presentation does not say if the best method presented is near
optimal or if there is still room for improvement.

• The choice of some parameters such as the tile size is not discussed.

4.3.1 Naive algorithm
In this first, simple version, one thread is responsible for computing one coefficient of 𝐶. Let’s
consider the thread at position (𝑖, 𝑗) that computes 𝐶𝑖,𝑗. To obtain the result, it simply evaluates
the expression:

∑
𝑝

𝑘=1
𝐴𝑖,𝑘𝐵𝑘,𝑗

Since each coefficient of 𝐴 and 𝐵 is read 𝑝 times from the global memory, this approach is
really slow: the throughput is only about 0.17 TFlops. This method is implemented in the
standard.comp shader.
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4.3.2 Shared memory
To limit the number of accesses to the global memory, the matrices are divided into tiles of
size 16 × 16. A thread block, composed of 16 × 16 threads, is responsible for the computation
of all the coefficients of a tile of the output matrix. The algorithm is similar to the previous
one, but this time, full tiles are loaded from 𝐴 and 𝐵 to the shared memory of the SM. Once
they are loaded, the product of the tiles is computed as usual, only reading from and writing
to the shared memory.

To improve the performance, the following optimisations are made:
• To coalesce the requests to the global memory, the coefficients of the 16 × 16 tiles of the

matrices are stored contiguously.
• To avoid bank conflicts when performing the product, the tiles of 𝐵 are stored transposed.

This approach is a bit faster, as the coefficients of 𝐴 and 𝐵 are read only 𝑝16  times from global
memory. The other accesses are from the shared memory which is much faster. This approach,
which has a throughput of about 0.81 TFlops, is implemented in the shared.comp shader.

The tiles have a size of 16 × 16 because it corresponds to the size of the cooperative matrices
that will be used in the following subsection.

4.3.3 Cooperative matrices
This algorithm is similar to the previous one, but instead of loading the tiles to the shared
memory and doing the product on the regular cores, cooperative matrices are used to do the
product on the tensor cores. As in the previous section, the coefficients of 𝐵 are stored contigu-
ously.

The method takes advantage of the physical components of the GPU that are available
to perform matrix multiplications, but it is still slow: the tiles are read from global memory
each time. This approach, which has a throughput of about 8.6 TFlops, is implemented in the
coopmat.comp shader.

We can see that tensor cores greatly improve the speed of the product: the memory is
loaded in the same way as before, but the execution time is ten times lower. This illustrates
the efficiency of the tensor cores.

4.3.4 Efficient use of cooperative matrices
The problem with the previous version is that the coefficients are loaded frequently from the
global memory. To avoid this, it is possible to load parts of columns of 𝐴 and parts of lines
of 𝐵, split them into 16 × 16 tiles and compute their outer product with cooperative matrices.
This process is represented on Figure 10. On the schema, each square in a matrix represents a
16 × 16 submatrix.
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𝑘 = 0 𝑘 = 1 𝑘 = 2
Figure 10: Efficient tiled product

In more details, if each thread block is responsible for the computation of a 𝑎 × 𝑎 block of the
output matrix (𝑎 being a multiple of 16), 𝑛𝑎 ×

𝑚
𝑎  thread blocks are created. Each thread block

has the responsibility to compute the values of a 𝑎 × 𝑎 block of the output matrix. To do it,
it performs 𝑘16  iterations. At each iteration, it loads a part of 16 columns of 𝐴 and a part of
16 lines of 𝐵 to the shared memory, computes their outer product efficiently using the tensor
cores (the coefficients are divided into many 16 × 16 tiles) and finally adds them to the final
result.

One question remains: how to choose 𝑎, the size of the blocks of the output matrix? To
reduce the number of reads from and writes to the global memory as much as possible, the
blocks must be as big as possible. However, two constraints must be verified:
• All the data used by a thread block must fit in the memory.
• There must be enough different blocks to avoid leaving some SM unused.

On the GPU that I used, the size of the shared memory is 100 KB, and each SM can contain
65536 32-bits registers. Since the coefficients are stored on float16, using 256 × 256 blocks was
a reasonable choice. Experimentally, it gave good results compared to other sizes of matrix.

To verify the second constraint, it may be interesting to use smaller blocks when the input
matrices are small enough. This is not the case here since we use 4096 × 4096 matrices for the
benchmark.

It is important to note that with this size of block, most of the shared memory is used, so
it is likely that only one thread block can be scheduled on each same SM. However, as shown
in Section 4.2, to be able to use the four tensor cores available on the SM, several warps must
be used. For this reason, I made each thread block contain 8 warps – that is, 32 × 8 = 256
threads. All these warps cooperate to load the input data to the shared memory. Once the
data is loaded, each of them is responsible for the computation of a part of the product. The
repartition of the thread blocks is represented on Figure 11: the square represents the submatrix
of the output matrix that the thread block is computing, and each rectangle represents the
submatrix computed by one of the warps.
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Figure 11: Submatrices of each warp

Since the warps are not independent, they have to be manually synchronised. This synchronisa-
tion must be done with caution, as over-synchronising the warps could lead to a slow execution
of the program and a low usage of the tensor cores. I used a different method from the bench-
mark [16] provided by Nvidia: I splitted the warps into two groups that always perform different
actions: when one is loading data, the other is performing products. This removes a part of the
latency: otherwise, the tensor cores are left unused when the treads are loading memory. This
optimization makes my implementation a little bit faster than the tensor cores benchmark, even
if my code is not very optimized (especially the loading of the data).

This approach, which has a throughput of about 34 TFlops, is implemented in the
tiled.comp shader.

4.3.5 Performance evaluation
The performances of the different algorithms are presented on the following table. All the al-
gorithms are evaluated with the multiplication of two 4096 × 4096 matrices.

Figure 12: Performance of the different methods

We can see that the best version of the algorithm is very efficient: the throughput almost reaches
the maximal possible value. This means that the tensor cores are used efficiently: we manage
so send them data fast enough to keep them busy.

5 Fast network inferencing
Now that we know how to multiply matrices efficiently on the Gpu, we can start to see how to
evaluate the Cnn quickly. Since the main operation of the network is the convolution, we will
focus on this operation.
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5.1 State of the art
Since the publication of Chaitanya’s article [2] in 2017, many articles about GPU denoising
in real-time have been published. They rely on variants of the U-Net architecture.

To speed up the rendering of a high-resolution image, it is generally possible to render a
smaller image, and then transform it into a high-resolution image using machine learning. A
network architecture has been proposed [6] to realize both the denoising and the supersampling
parts at the same time. To realize the inference of the network quickly, Nvidia’s TensorRT
[18] is used. This library generates Cuda kernels that are executed on the GPU. These kernels
are rather efficient and can take advantage of the tensor cores: the whole network can be in-
ferred in a few milliseconds. However, the library doesn’t support some operations specific to
denoising, so some of the steps must be implemented manually in shaders. Plus, some time is
lost converting the data in a format accepted by TensorRT, which is suboptimal [6, 4.3].

5.2 Efficient convolution
The convolutions are the operations that take most of the time of the evaluation of the network.
It is necessary to implement them carefully to have a network that can be executed at real-
time rates. A convolution can be performed with the same algorithm as matrix multiplication,
but with different matrices.

Figure 13: Reduction of the convolution to matrix product

Figure 13 shows the matrices that should be used to compute the convolution:
• The matrix 𝐴 (in blue) contains the input data. Each line contains the input data for a pixel,

that is the features of the pixel and the features of its 8 neighbours (for a 3 × 3 convolution
as here).

• The matrix 𝐵 (in red) contains the weights. Each column gives the weights corresponding
to a given output feature.

• The matrix 𝐶 (in purple) contains the output data. Each line contains the features of a pixel
of the image.

We can note that the matrices are not square: if 𝐴 is 𝑛 × 𝑝 and 𝐵 is 𝑝 ×𝑚, we have 𝑛 ≫ 𝑝 ≫ 𝑚.

In practice, these matrices are never explicitly constructed: the input matrices are gener-
ated on the fly thanks to the input data, and the coefficients of the output matrix are written
directly at the right place of the memory.

Unfortunately, I did not have the time to implement the efficient algorithm seen previously:
I only used a simpler and less efficient variant. For this reason, the final performance is far from
what could have probably been achieved.
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5.3 Inferencing the network
The evaluation of the network is composed of different operations: convolutions, max-pooling,
skip connections and upsampling. If these different operations are realized separately in different
shaders, the data must be accessed from global memory many times, which can take some time.
To avoid this overhead, the max-pooling, the skip connections and the upsampling operations
are not performed in their own shader. Instead, they are realized in a shader that also performs
a convolution.

To achieve this, a shader is generated for each convolution layer: the same code is compiled
several times with different parameters. The shader performs a convolution. It is able to read
its input data from several buffers, which is needed when the outputs of several layers must be
concatenated (it happens after a skip connection). The shader also performs a max-pooling or
an upsampling step if needed. This also has the advantage of allowing the compiler to better
optimize the code. For instance, if the number of features is known at compile time, it allows
the compiler to unroll more loops, which has an important impact on performances.

5.4 Performance evaluation
Table 1 and Table 2 show the performance of each convolution layer of the network. As in pre-
vious sections, the throughput is defined as the number of multiply-add operations per second
during the convolution. All the measurements are obtained with a 1024 × 1024 image as input.
The time taken to realize the upsampling or the max-pooling is included in the measurements,
but it is negligible compared to the time of the convolution.

Convolution 0 1 2 3 4 5
Time (ms) 0.93 2.31 0.99 0.83 0.99 0.51

TFlops 2.27 1.41 1.46 0.77 0.28 0.18

Table 1: Performance of the encoder

Convolution 6 7 8 9 10 11 12 13 14 15
Time (ms) 0.84 0.35 1.17 0.82 2.82 1.2 3.87 1.68 8.16 3.32

TFlops 0.9 2.17 1.69 2.08 1.59 3.18 2.62 5.2 2.78 0.55

Table 2: Performance of the decoder

We can see that the throughput is about 10 times lower than the throughput obtained when
only performing matrix multiplication. This means that the tensor cores are under-used, and
that most of the time is taken by accessing the global memory.

This is due to the fact that I did not have the time to implement the efficient method seen
previously, but instead used a less efficient variant. I think it should be possible to significantly
improve the execution time of the convolution by implementing this method. However, the
version that I implemented is only about two times slower than the version implemented with
Tensorflow, which means that it is already rather efficient.

6 Conclusion
During my internship, I worked on real-time GPU denoising using convolutional neural net-
works. I first had to learn how Gpu computing works, and how to write efficient programs that
run on Gpu. It took me several weeks, it was very frustrating to spend such a long time making
everything work. Then, I trained a convolutional neural network to denoise images thanks to
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scenes that I generated. I also worked on a fast algorithm to evaluate this network quickly: I
first focused on matrix multiplication algorithms, then on convolution algorithms.

This internship gave me the occasion to learn about Gpu computing and to work with
machine learning on a real-world problem, which is something I found really interesting… even
if I had to spend a lot of time trying to solve very strange issues specific to Gpu computing.

Overall, this internship was a very good experience. Everyone was very welcoming and
available to help me both living in Karlsruhe and solving the problems that I had related to
my subject. I would like to thank them for making this internship possible.
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A Hardware specification
All the experiments mentioned in this report were realized on the same computer. It is equipped
with the graphic card Nvidia GeForce Rtx 3070 Ti [19]. The characteristics of this card are
available online [20]. Among other things, this card has the following characteristics:
• 48 Streaming Multiprocessors at 1.58 GHz
• 8.6 compute capability: this indicates some properties supported by the graphic card

The 8.6 compute capability corresponds to the characteristics below. A more in-depth descrip-
tion can be found on Nvidia’s website [9, 16.].
• 65536 32-bit registers per SM
• 65536 32-bit registers per thread block
• 255 32-bit registers per thread
• 100 KB of shared memory per SM

B Performance measurement protocol
To save energy, the GPU is able to adapt its clock speed to how much computation needs to
be done. To perform reliable and reproducible measurements, it is necessary to fix this clock
speed. The speeds available on the GPU can be listed with nvidia-smi --query-supported-
clocks=gpu_name,memory,graphics --format=csv. I chose to fix the memory clock speed at 9501
MHz and the core speed at 1920 MHz. Performance measurements are realized following this
protocol:
• Enable the persistence mode: nvidia-smi -i 0 -pm 1
• Fix the GPU core speed: nvidia-smi --lock-gpu-clocks=1920
• Fix the memory clock speed: nvidia-smi --lock-memory-clocks=9501
• Make the measurement
• Reset the settings: nvidia-smi --reset-gpu-clocks and nvidia-smi --reset-memory-clocks

C Source code
Most of the codes that I wrote during the internship are available on Github at the following
address: https://github.com/AdrienVannson/gpu-denoising. A README.md file describes the con-
tent of this repository. The shaders that I wrote consist of modules of vkdt, a software currently
developed by my internship supervisor. I only published the code that I wrote, without includ-
ing the code of the whole software.
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