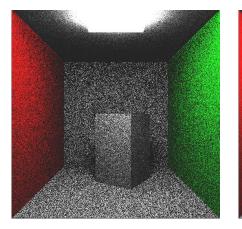
Real time denoising on GPU

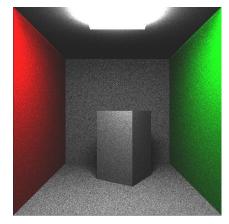
Adrien Vannson. Internship supervised by Johannes Hanika.

Introduction

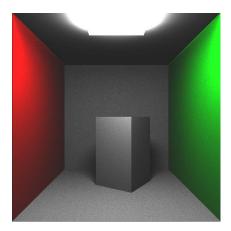


100 samples per pixel

300 samples per pixel



900 samples per pixel



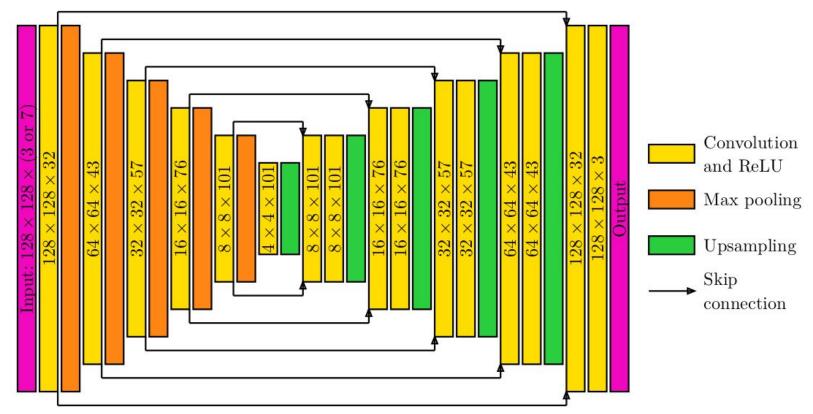
10000 samples per pixel

Motivation

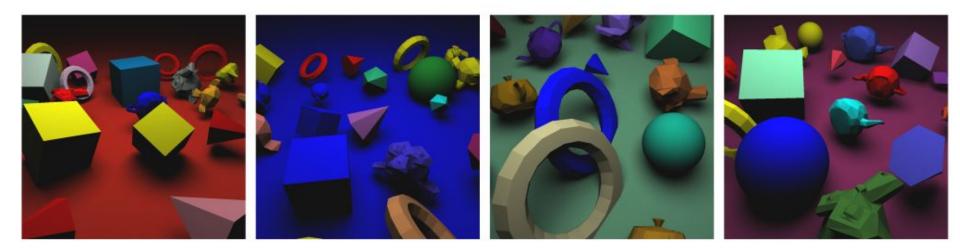
- Path tracing: promising but unusable in real time
- ML denoising: can work but costly to execute
 - ML frameworks are not designed to work at real-time rates
 - Libraries offering efficient matrix multiplication algorithms often need CUDA
 - Difficult to use the Tensor Cores with Vulkan
- NVIDIA released the Cooperative Matrices extension to allow using Tensor Cores
- Does it allow us to reach real-time rates for ML denoising?

Denoising images

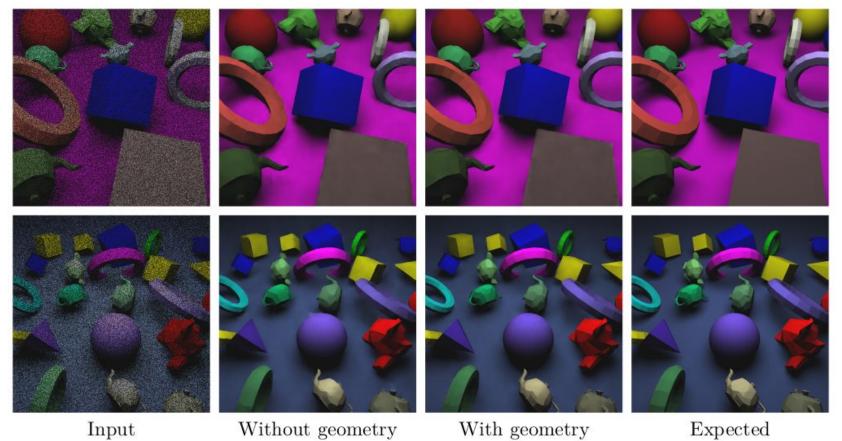
Architecture of the U-Net network



Training

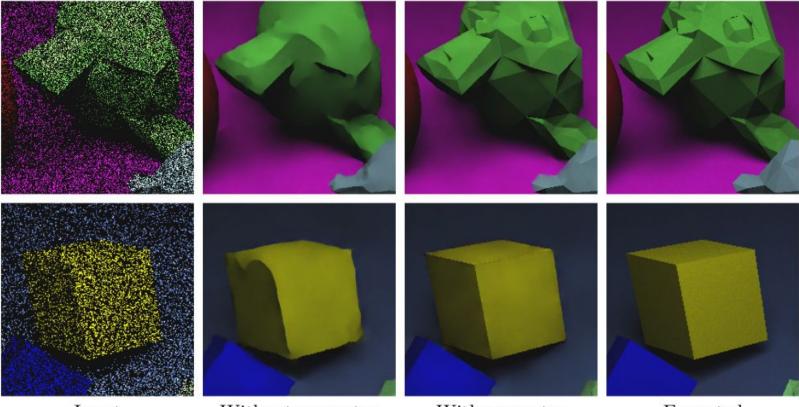


Evaluation



7

Evaluation



Input

Without geometry

With geometry

Expected

Introduction to GPU computing

Real time denoising on GPU - Adrien Vannson

Thread hierarchy

• Programs: composed of *shaders*, ie files defining a function called the *kernel*.

Thread

Thread

Thread

Thread

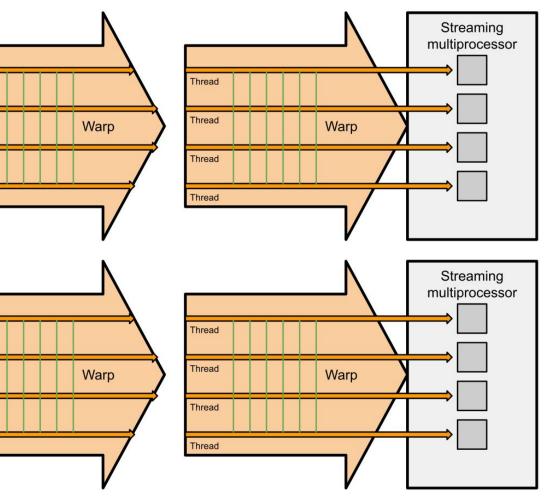
Thread

Thread

Thread

Thread

- Kernel: executed several times in parallel, each instance is a *thread*.
- The threads are grouped in *thread blocks* (programming abstraction) and *warps* (low-level).
- A warps contains 32 threads executed together (SIMT)

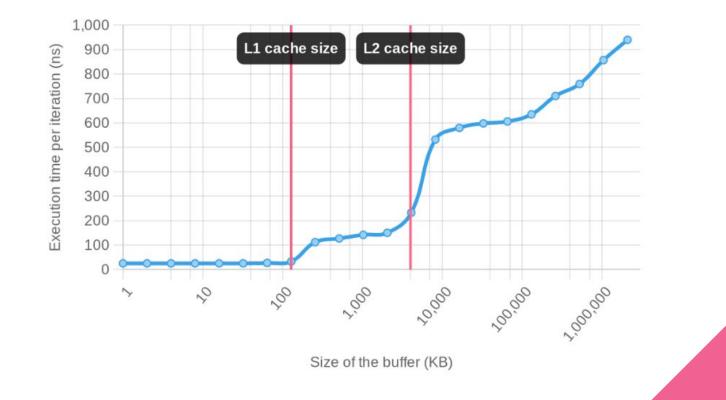


Memory hierarchy

- Global memory
 - Compares to the RAM for CPU
 - Accessible by all the threads
 - ≈ 10 GB
 - Very slow (\approx 500 ns latency)
- Shared memory
 - \circ ~ Located on the SM \rightarrow accessible by the threads of the same thread block
 - ≈ 100 KB
 - Fast (≈1 ns latency)
- Registers
 - Located on each processor, can not be shared among threads
 - Fastest memory available

Hardware effects: global memory

```
uint pos = 0;
for (int i = 0; i < 1000000; i++) {
    pos = buffer[pos];</pre>
```

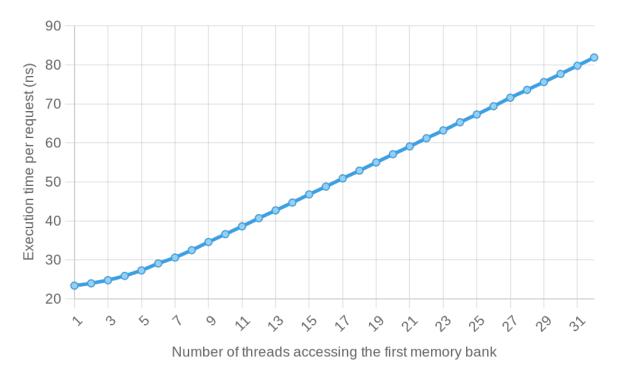


Hardware effects: memory coalescing

- When the threads of a warp need global memory, their requests are treated together.
- If possible (ie contiguous memory requested), only one transaction is performed.
- Otherwise, multiple transactions are realized \rightarrow slower

"The concurrent accesses of the threads of a warp will coalesce into a number of transactions equal to the number of 32-byte transactions necessary to service all of the threads of the warp."

Hardware effects: bank conflicts



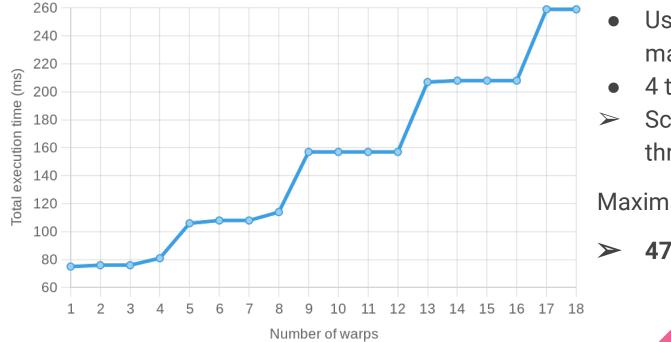
- Shared memory: stored on 32 components per SM
- If all the threads need memory on the same component: bank conflict → slow request

Hardware effects: thread divergence

- SIMT (Single Instruction, Multiple Threads) for threads of the same warp
- > The same instruction is performed by all the threads
- What about if statements?
- Some threads are disabled
- In a if / else statement: both blocks are executed serially

if C:
 f()
else:
 g()

Matrix multiplication



- Used to multiply 16 x 16 matrices
- 4 tensor cores by SM
- Schedule at least 4 x 32 threads per SM

Maximal throughput:

47 TFlops

Naive algorithm

- $A \in \mathbb{R}^{n \times p}, B \in \mathbb{R}^{p \times m}$
- Naive $O(n \times p \times m)$ algorithm
- One thread for each output coefficient
- Read everything from global memory
- 0.17 TFlops

 $\sum_{i=1}^{k} A_{i,k} B_{k,j}$

Shared memory

- One thread for each output coefficient, 16 × 16 thread blocks
- Load 16 × 16 tiles to shared memory
- > Only p / 16 reads per coefficient
- 0.81 TFlops

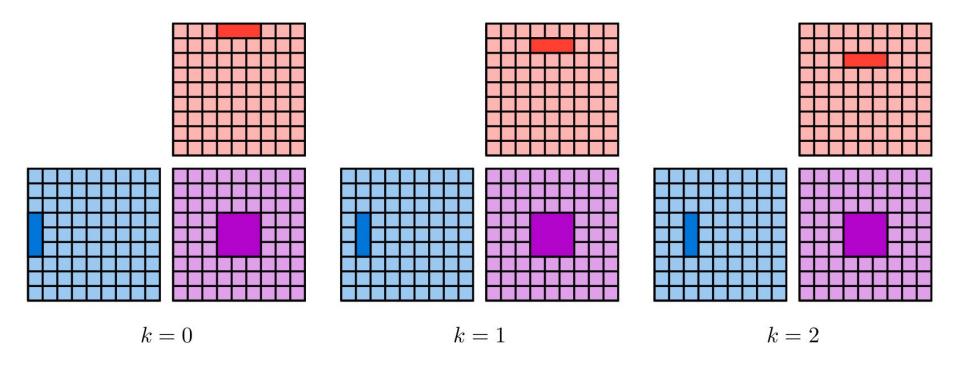
Cooperative matrices

- Same algorithm but using tensor cores to perform the product
- 8.6 TFlops

Efficient use of cooperative matrices

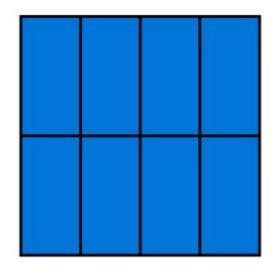
- Data is still loaded too often from global memory
- ➤ Use bigger thread blocks (256 x 256)
- Use rows / columns instead of tiles

Efficient use of cooperative matrices

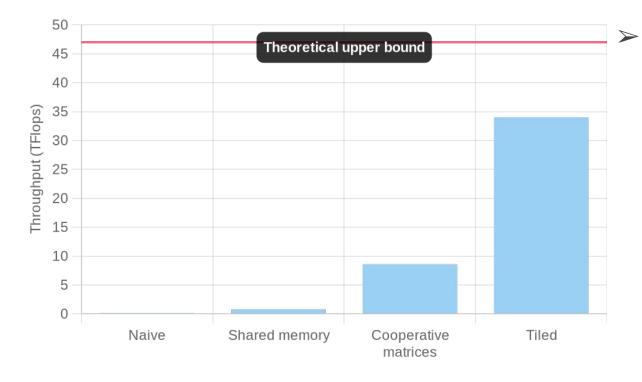


Efficient use of cooperative matrices

- Lots of memory needed \rightarrow only one thread block per SM
- To use all the four tensor cores, we need more than one warp
- 8 warps (ie 8 x 32 = 256 threads) per block
- ✓ 34 TFlops!



Performance evaluation



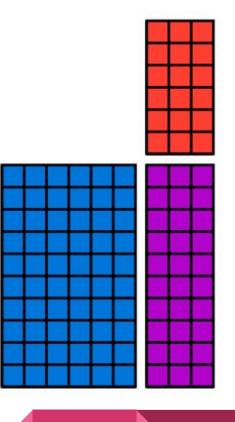
We can use the tensor cores very efficiently!

Fast network inferencing

Real time denoising on GPU - Adrien Vannson

Convolution as matrix product

- Matrix A, in blue: input data
- Matrix B, in red: weights
- Matrix C, in purple: output data



Inferencing the network

- One shader per convolution: max pooling, upsampling and skip connections do not have their own shader
- Shaders generation at compile time \rightarrow more compiler optimizations

Performance evaluation

Convolution	0	1	2	3	4	5
Time (ms)	0.93	2.31	0.99	0.83	0.99	0.51
TFlops	2.27	1.41	1.46	0.77	0.28	0.18

Table 1: Performance of the encoder

Convolution	6	7	8	9	10	11	12	13	14	15
Time (ms)	0.84	0.35	1.17	0.82	2.82	1.2	3.87	1.68	8.16	3.32
TFlops	0.9	2.17	1.69	2.08	1.59	3.18	2.62	5.2	2.78	0.55

 Table 2: Performance of the decoder

Conclusion