
Real time denoising on GPU
Adrien Vannson. Internship supervised by Johannes Hanika.

1



Introduction

100 samples per pixel 300 samples per pixel 900 samples per pixel 10000 samples per pixel

2Real time denoising on GPU - Adrien Vannson



Motivation

● Path tracing: promising but unusable in real time
● ML denoising: can work but costly to execute

○ ML frameworks are not designed to work at real-time rates
○ Libraries offering efficient matrix multiplication algorithms often need CUDA
○ Difficult to use the Tensor Cores with Vulkan

● NVIDIA released the Cooperative Matrices extension to allow using Tensor 
Cores

● Does it allow us to reach real-time rates for ML denoising?

3Real time denoising on GPU - Adrien Vannson



Denoising images

4Real time denoising on GPU - Adrien Vannson



Architecture of the U-Net network

5Real time denoising on GPU - Adrien Vannson



Training

6Real time denoising on GPU - Adrien Vannson



Evaluation

7



Evaluation

8



Introduction to GPU computing

9Real time denoising on GPU - Adrien Vannson



Thread hierarchy

● Programs: composed of 
shaders, ie files defining a 
function called the kernel.

● Kernel: executed several times 
in parallel, each instance is a 
thread.

● The threads are grouped in 
thread blocks (programming 
abstraction) and warps 
(low-level).

● A warps contains 32 threads 
executed together (SIMT)

10Real time denoising on GPU - Adrien Vannson



Memory hierarchy

● Global memory
○ Compares to the RAM for CPU
○ Accessible by all the threads
○ ≈ 10 GB
○ Very slow (≈500 ns latency)

● Shared memory
○ Located on the SM → accessible by the threads of the same thread block
○ ≈ 100 KB
○ Fast (≈1 ns latency)

● Registers
○ Located on each processor, can not be shared among threads
○ Fastest memory available

11Real time denoising on GPU - Adrien Vannson



Hardware effects: global memory

12Real time denoising on GPU - Adrien Vannson



Hardware effects: memory coalescing

● When the threads of a warp need global memory, their requests are treated 
together.

● If possible (ie contiguous memory requested), only one transaction is 
performed.

● Otherwise, multiple transactions are realized → slower

“The concurrent accesses of the threads of a warp will coalesce into a number of 
transactions equal to the number of 32-byte transactions necessary to service all of 
the threads of the warp.”

13Real time denoising on GPU - Adrien Vannson



Hardware effects: bank conflicts

● Shared memory: stored 
on 32 components per 
SM

● If all the threads need 
memory on the same 
component: bank 
conflict → slow request

14Real time denoising on GPU - Adrien Vannson



Hardware effects: thread divergence

● SIMT (Single Instruction, Multiple Threads) for threads of the same warp
➢ The same instruction is performed by all the threads
● What about if statements?
● Some threads are disabled
● In a if / else statement: both blocks are executed serially

15Real time denoising on GPU - Adrien Vannson



Matrix multiplication

16Real time denoising on GPU - Adrien Vannson



Tensor cores

● Used to multiply 16 x 16 
matrices

● 4 tensor cores by SM
➢ Schedule at least 4 x 32 

threads per SM

Maximal throughput:

➢ 47 TFlops

17Real time denoising on GPU - Adrien Vannson



Naive algorithm

● A ∈ ℝn×p, B ∈ ℝp×m

● Naive O(n × p × m) algorithm
● One thread for each output coefficient
● Read everything from global memory
● 0.17 TFlops

18Real time denoising on GPU - Adrien Vannson



Shared memory

● One thread for each output coefficient, 16 × 16 thread blocks
● Load 16 × 16 tiles to shared memory
➢ Only p / 16 reads per coefficient
● 0.81 TFlops

19Real time denoising on GPU - Adrien Vannson



Cooperative matrices

● Same algorithm but using tensor cores to perform the product
● 8.6 TFlops

20Real time denoising on GPU - Adrien Vannson



Efficient use of cooperative matrices

● Data is still loaded too often from global memory
➢ Use bigger thread blocks (256 x 256)
➢ Use rows / columns instead of tiles

21Real time denoising on GPU - Adrien Vannson



Efficient use of cooperative matrices

22Real time denoising on GPU - Adrien Vannson



Efficient use of cooperative matrices

● Lots of memory needed → only one thread block 
per SM

● To use all the four tensor cores, we need more than 
one warp

● 8 warps (ie 8 x 32 = 256 threads) per block
✓ 34 TFlops!

23Real time denoising on GPU - Adrien Vannson



Performance evaluation

➢ We can use the tensor 
cores very efficiently!

24Real time denoising on GPU - Adrien Vannson



Fast network inferencing

25Real time denoising on GPU - Adrien Vannson



Convolution as matrix product

● Matrix A, in blue: input data
● Matrix B, in red: weights
● Matrix C, in purple: output data

26Real time denoising on GPU - Adrien Vannson



Inferencing the network

● One shader per convolution: max pooling, upsampling and skip connections 
do not have their own shader

● Shaders generation at compile time → more compiler optimizations

27Real time denoising on GPU - Adrien Vannson



Performance evaluation

28Real time denoising on GPU - Adrien Vannson



Conclusion

29Real time denoising on GPU - Adrien Vannson


